Stress singularities and the formation of birefringent strands in stagnation flows of dilute polymer solutions

نویسندگان

  • Paul Becherer
  • Alexander N. Morozov
چکیده

We consider stagnation point flow away from a wall for creeping flow of dilute polymer solutions. For a simplified flow geometry, we explicitly show that a narrow region of strong polymer extension (a birefringent strand) forms downstream of the stagnation point in the UCM model and extensions, like the FENE-P model. These strands are associated with the existence of an essential singularity in the stresses, which is induced by the fact that the stagnation point makes the convective term in the constitutive equation into a singular point. We argue that the mechanism is quite general, so that all flows that have a separatrix going away from the stagnation point exhibit some singular behaviour. These findings are the counterpart for wall stagnation points of the recently discovered singular behaviour in purely elongational flows: the underlying mechanism is the same while the different nature of the singular stress behaviour reflects the different form of the velocity expansion close to the stagnation point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling instabilities in dilute polymer solution elastic strands

A microfluidic oscillatory cross-slot flow is used to visualize birefringent strands in dilute polystyrene solutions with high temporal resolution, focusing specifically on reversals in the flow direction. Due to polymer conformation hysteresis, the elastic strands are slow to relax and demonstrate a compressive modulus, resulting in a “buckling instability.” An elastic loop of birefringence fo...

متن کامل

Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands

Birefringent strands are key to understanding polymeric non-Newtonian flows, especially in extension. Utilising microfluidic extensional flow oscillatory rheometry coupled with microvelocimetry (μ-PIV), we report experiments on the genesis, steady state and decay of such strands, together with rheological consequences. For closely monodisperse atactic polystyrene, we report massive effects of t...

متن کامل

Scaling of singular structures in extensional flow of dilute polymer solutions

Recently singular solutions have been discovered in purely elongational flows of visco-elastic fluids. We surmise that these solutions are the mathematical structures underlying the so-called birefringent strands seen experimentally. In order to facilitate future experimental studies of these we derive a number of asymptotic results for the scaling of the width and extension of the near-singula...

متن کامل

Instabilities in stagnation point flows of polymer solutions

A recently-developed microfluidic device, the optimized shape cross-slot extensional rheometer, or OSCER [S.J. Haward, M.S.N. Oliveira, M.A. Alves and G.H. McKinley, Phys. Rev. Lett. 109, 128301 (2012)], is used to investigate the stability of viscoelastic polymer solutions in an idealized planar stagnation point flow. Aqueous polymer solutions, consisting of poly(ethylene oxide) and of hyaluro...

متن کامل

Extensional opto-rheometry with biofluids and ultra-dilute polymer solutions

Complex fluids containing long polymer chains exhibit measurably large resistance to stretching or extensional flows, due to additional stresses generated by the extensional deformation of the underlying fluid microstructure. Understanding and quantifying the response of such elastic fluids to extensional flows is necessary for optimizing fluid composition for technological applications like in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008